patients and also by respiratory muscle limitation in 10% of the patients.

Conclusions: Based on admission diagnosis of 40 patients, 90% were defined as subject to pulmonary rehabilitation and in 10% were receiving cardiac rehabilitation. They divided into three specific functional recovery programs: ventilatory function recovery program (60%), cardiac function recovery program (30%), respiratory muscles recovery program (10%).

Leg Muscle Blood Flow During 1 and 2-Leg Knee Extension Exercise in Patients with COPD and Aged-Controls

Robillard Julie, Fatihat Momoh, Jacinthe Baril, Montreal, Quebec, Canada
Andrew William Sheel, Vancouver, British-Columbia, Canada
Robert Boushel, David Laurin, Amanda Rossi, Julie Deschênes, Jean Bourbeau, Tanja Taivassalo, Hélène Perrault, Montreal, Quebec, Canada

Background: In chronic obstructive pulmonary disease (COPD), leg muscle blood flow may be compromised during dynamic exercise due to the competing influence of respiratory muscle work for available cardiac output. This study examined the flow demand limits of skeletal muscle flow in varying muscle mass recruitment. It employed one leg knee extension (1L-KE) and two-leg knee extension (2L-KE) to examine the mass-specific work rates at which peripheral circulatory function may become compromised due to elevated respiratory demands.

Methods: Three male COPD patients (70 ± 5 yr; FEV₁/FVC = 42 ± 11%) and two aged-controls (74 ± 1 yr; FEV₁/FVC = 76 ± 5%) completed three sets of 7-minute steady state 1L-KE and 2L-KE at 20, 40 and 65% (SS20%; SS40%; SS65%) of previously determined ergometer-specific peak power, separated by rest periods of 15 min. Leg muscle blood flow (BF) was determined using pulsed Doppler sonography of the femoral artery during incremental exercise loads and post-exercise. ECG, blood pressure, ventilatory parameters and VO2 were obtained continuously, and dye dilution cardiac output was measured at rest and during exercise.

Results: Preliminary data showed that, for each exercise intensity, the required VO₂ is similar in both groups. However, the workloads in COPD are between 60% and 82% of the control group workloads. During 1L-KE and 2L-KE, BF is consistently higher in COPD compared to controls. For 1L-KE, the increase in BF from rest (mean ± SD in ml/min; COPD vs controls) are SS20%; 763 ± 244 vs 105 ± 34; SS40%; 1157 ± 597 vs 310 ± 97; SS65%; 1493 ± 348 vs 424 ± 45. BF relative to workload is at least 3-fold higher in COPD compared to controls for all exercise intensities.

Conclusions: These data suggest that mean muscle blood flow may not be compromised during knee-extensor exercise in COPD patients, and ongoing data will clarify whether this is a compensatory response to altered peripheral muscle metabolic function.

A Written Action Plan for Early Treatment of COPD Exacerbations: An Important Component to the Reduction of Hospitalizations

Sedeno Maria F, MM, Respiratory Epidemiology and Clinical Research Unit, Montreal Chest Institute, McGill University, Montréal, Québec, Canada
Diane Nault, MSc, Respiratory Epidemiology and Clinical Research Unit, Montreal Chest Institute, McGill University and Chronic Obstructive Pulmonary Disease axis of the Respiratory Network, Fonds de la Recherche en Santé du Québec (FRSQ), Montréal, Québec, Canada
Dina H. Hamd, PhD, Respiratory Epidemiology and Clinical Research Unit, Montreal Chest Institute, McGill University, Montréal, Québec, Canada
Jean Bourbeau, MD, Respiratory Epidemiology and Clinical Research Unit, Montreal Chest Institute, McGill University and Chronic Obstructive Pulmonary Disease axis of the Respiratory Network, Fonds de la Recherche en Santé du Québec (FRSQ), Montréal, Québec, Canada

Background: This study explored the role of a written action plan in reducing hospitalizations as a com-
ponent of a COPD self-management program in a rec-
cent multi-centre RCT.

Methods: Patients were randomly allocated into 2
groups: intervention or usual care. The intervention
group had access to a self-management education
program Living Well with COPD, the support of a
case manager, and a written action plan with a self-
administered prescription of antibiotics and predni-
sone. Patients were instructed to start both antibiotics
and prednisone in case of exacerbation with a change
in 2 or more symptoms (increased dyspnea, increased
sputum volume and/or purulent sputum) for at least 24
hr.

Results: One hundred and sixty six patients with
COPD presented with one exacerbation or more in the
12-month study period. Exacerbations (608) were
confirmed by a change in at least one symptom; 429
(70.6%) by a change in 2 or more. Antibiotics were
used in 61.3% of the exacerbations and prednisone
in 47.7%. The combination of antibiotics and prednisone
was used more often by the intervention group in
exacerbations presenting changes in 2 or more symp-
toms (52.9% vs. 34.8%, \(P<0.001 \)). This difference
was driven by a higher use of prednisone in the inter-
vention group (55.7% vs. 44.3%, \(P<0.001 \)) consistent
with dyspnea deterioration. In the intervention group,
exacerbations treated with antibiotics and prednisone
had less risk of requiring an hospitalization than those
occurring in the control group (16.5% vs. 35.1%,
\(P<0.001 \)).

Conclusions: Improved access to treat exacerbations
provided by the written action plan plays an important
role in reducing hospitalization risk.

**BNP after Cardiac Surgery in Patients with Nor-
mal Ventricular Function**

Venturini Elio, Antonella Leoni, Dept. of Clinical
Chemistry Civic Hospital Livorno, Italy
Claudio Marabotti, Alessandro Scalzini, Roberto
Testa, Dept. of Cardiology Civic Hospital Cecina,
Italy

Background: Brain natriuretic peptide (BNP) is
proven marker for diagnosis and stratification of
patients (P) with heart failure; furthermore it can be
useful for differential diagnosis of dyspnea, for detec-
tion of diastolic dysfunction and as guide and moni-
toring of therapy. Acute coronary syndrome, atrial fib-
ribillation (AF), aortic stenosis and hypertrophic car-
diomyopathy are other conditions in which the BNP
can be raised. Little is know about the level of BNP in
P undergo cardiac surgery. Aim of the study was to
detect the concentration of BNP immediately after
CABG and to follow the course during cardiac
rehabilitation (CR).

Methods: we studied 18 P (mean age 67.8±11.2 yrs)
9.1±3.6 days after surgery and we repeated the evalua-
tion after our program of CR, in average 56 days of
distance from CABG. In each P was performed an
echocardiogram (inclusive study of right ventricle,
diastolic function and DTI), a determination of BNP
(NT-proBNP) and also the six-minute walking test
(SMWT). Every effort was made for not varying the
therapy during the period of observation. Exclusion
criteria were: MI in the last 3 months, heart and renal
failure, use of inotropics drugs and AF after cardiac
surgery.

Results: the concentration of BNP was high in both
determinations even if it lowered in the second (BNP1
vs BNP2: pg/ml 1225.1±873.2 vs 708.7±741 \(p<0.001 \));
also the left atrial volume decreased (ml 50.7±11.6 vs
46.4±8.8 \(p<0.01 \)) while the ejection fraction didn't
vary, (EF1 vs EF2: 57.2±6.7 vs 59.8±9.1 ns). There
was an increase of the distance crossed to the SMWT
(mt 254.7±65.4 vs 435.3±69.6 \(p<0.001 \)); glycaemia
and creatinine values were normal in both determi-
nations while the hemoglobin increased (11.5±1.2 vs
13.2±1.3 \(p<0.01 \)). Other echo parameters(E/A, E/Em,
TAPSE, PAPs) were not meaningfully varied with the
exception of DT (221.6±66.3 vs 253.8±72.3 \(p<0.05 \)).
We have not found correlations between A BNP
and: Ä LA V, Ä SMWT, Ä E/A or Ä E/Em. Instead, the
relationship was statistically signifcant with the DT
(r: 0.78 p<0.01). Also the second determination of the
BNP had the followings relationships:

<table>
<thead>
<tr>
<th>2nd BNP</th>
<th>r</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>E/A2</td>
<td>0.68</td>
<td><0.01</td>
</tr>
<tr>
<td>E/Em2</td>
<td>0.58</td>
<td><0.05</td>
</tr>
<tr>
<td>PAPs2</td>
<td>0.59</td>
<td><0.05</td>
</tr>
<tr>
<td>EF2</td>
<td>0.63</td>
<td><0.05</td>
</tr>
</tbody>
</table>