Primary hydatid disease in adductor muscles

Hasan Tahsin Sarisoy1 MD
Kaya Memisoglu2 MD
Gulden Sonmez Tamer3 MD, PhD
Ahmet Yilmaz Sarlak2 MD

1Department of Radiology, School of Medicine
2Department of Orthopedics and Traumatology
3Department of Clinical Microbiology
Kocaeli University, Kocaeli, Turkey

Manuscript submitted 20th June, 2008
Manuscript accepted 4th August, 2008


Abstract

Primary muscular Echinococcus infection is very rare without involvement of thoracic and abdominal organs. In this case a 31-year-old man who had a growing mass in the postero-medial part of his right thigh was examined. The mass was diagnosed as hydatid cyst using ultrasound, magnetic resonance imaging (MRI) and serological tests. It was removed surgically and there has been no recurrence one year after the surgery.

The MRI imaging characteristics may differ depending on the life cycle stage of the parasite. In this case report, we discuss the imaging characteristics of the muscular hydatid cyst with special emphasis on the MRI findings. In regions where hydatidosis is endemic, a mass found in body muscles should be considered as a muscular hydatid cyst.

Echinococcosis (hydatid disease) caused by the tapeworm Echinococcus granulosus is a worldwide problem especially in sheep and cattle among developing countries. It is endemic in some regions, including the Mediterranean, the Middle East, the South America and Far East regions.2,3 The annual incidence in Turkey is 12 per 100.000.1 When humans ingest the eggs of the tapeworm, the embryos that emerge penetrate the intestinal mucosa and are transported via the circulation to various organs. Most commonly they reach the liver (28 % of cases) and lungs (64%). Other organs are rarely affected. Primary hydatid cyst of skeletal muscle is rare, occurring in 1-3% of all cases.2,3

The diagnostic procedures include obtaining history data with special reference to the patient’s occupation and residence, clinical examination, ultrasonography, computed tomography, magnetic resonance imaging (MRI), and serology.3,4 MRI findings may change depending on the stage of the disease and concomitant infection.

After written informed patient consent was obtained, we present a rare case of intramuscular hydatid cyst and includes serology tests and MRI findings.

Case report

A 31-year-old man was admitted to the orthopaedic clinic with eight months history of a slowly growing mass in the medial aspect of the right thigh. Physical examination revealed a non-tender fixed mass deep in the postero-medial part of the right thigh measuring 9x16 cm. There was no erythema, ecchymosis or fluctuation to suggest inflammation. There was no evidence of bone destruction or effect on adjacent bone. Hip and knee joints exhibited normal ranges of motion. Peripheral pulses were equal in both limbs.
Complete blood count, electrolytes, alkaline and acid phosphatase values were within normal limits. Soft tissue swelling was present on the medial and posterior side of the distal side. Total IgE concentration was high (294 kU/L). After evaluation of clinical, radiological and serological findings, the diagnosis of hydatid disease was made. Serological tests included indirect hemagglutination (IHA, Dade Behring, Germany) indirect immunofluorescence (IFAT, Euroimmun, Luebeck, Germany) and enzyme linked immunosorbent assay (ELISA, Euroimmun, Luebeck, Germany). The tests were positive. Titers for IHA and IFAT were 1/8192 and 1/1000, respectively. ELISA for echinococcosis resulted 180 RU/ml. Postoperative treatment was with albendazole 200 mg bid for six weeks after which specific antibody titers were 1/256 for IHA, 1/32 for IFAT and 48RU/ml for ELISA. The cut-off titers for IFAT and the IHA and cut-off values for ELISA were 1/100, 1/16, 22RU/mL, respectively.

Ultrasonography revealed an intramuscular cystic mass with multilocular daughter cysts. The extent and characteristics of the mass were detailed with MRI. In T2-weighted images the mass consisted of two different cystic components; a medial large component and a lateral small cyst. The large cyst had the appearance of a detached membrane within. Both cysts had a thick hypo-intense rim resembling a fibrous capsular pericyst layer in all sequences. The inner content of the large medial cystic component showed more hyper-intensity than the smaller lateral part in T1-weighted images. This sign was attributed to the high protein content of the large cyst. With intravenous contrast administration prominent contrast enhancement was seen in the wall of the large cyst but not in the wall of the small cyst.

Preoperatively, albendazole (10 mg/kg per day) was given for 10 days. Under general anaesthesia, the lesion with adductor muscles was excised en bloc with a wide margin without destroying the cyst wall which was irrigated with 3% hypertonic saline. The patient tolerated surgery well and postoperative recovery was uneventful. Albendazole (10 mg/kg twice daily) was given for 3 months postoperatively. After a follow up of 12 months, ultrasonography and serology (IFAT...
and ELISA) were normal and no recurrence was noted.

Histological examination of the specimen revealed daughter cysts and fragments of the lamellar membrane of the hydatid cyst. Scolices were also detected within the surgical specimen. No superimposing infection was detected with histopathological analysis.

Discussion
Primary intramuscular hydatidosis is rare because intramuscular growth of the cysts is hindered by the muscle contractility and by the high level of lactic acid. Cysts develop very slowly and act as space occupying lesions, producing symptoms related to pressure on the surrounding tissues. Other possible primary locations of the disease must be excluded by careful clinical and radiological examination. Several serological tests are available but may give negative results because of encapsulation. Ultrasonography helps to prove the cystic character of the muscular mass while CT and MRI findings show the location, size and appearance of the cyst.

As the embryos are growing in particular organs they form large cysts which are composed of some parts and layers. The outer layer of the cyst, pericyst, is a layer composed of modified host cells that form a dense, fibrous zone. The middle layer is a laminated acellular membrane. The inner layer is the germinative membrane which the protoscolecles and laminated membrane are produced. The cyst may contain smaller cysts named daughter cysts which are generated by the germinative membrane nests.

The classic MRI findings include multiple cysts within the cyst, a low-intensity rim on T2-eighted images or a detached membrane. The hypo-intense rim is thought to represent the pericyst and this rim enhances after intravenous contrast administration because of high vascularity of the cyst. The degree of the enhancement is much higher in infected cysts. The rim is showed to be less developed in muscle cyst hydatid lesions.

The present case had two adjacent cysts with different internal composition as seen by MRI. The large cyst had a detached germinative membrane and a prominent contrast fixation in the pericyst layer. The detachment of the endocyst from the pericyst is thought to be related to decreased intracystic pressure, inflammation, host response or response to therapy. Inflammatory signal changes are apparent around the cysts in the soft tissues of the tight. The small cyst is homogenous and faint contrast enhancement in the outer rim. The unenhanced T1-weigted images show the large cyst to have a more hyper-intense than the small cyst. This is concordant with high protein content of the large cyst. On T2-weighted images, both cysts had hyper-intense inner content with a hypo-intense rim. Collapse of the germinative membrane may bring the cyst content in contact with the host tissues. In this case the rim of the larger cyst with detached membrane was enhanced much more with contrast than the small cyst with intact inner layer which may be due to the inflammatory response to cyst content by the host tissues. This shows that strong pericyst enhancement could exist without coincident infection.

Surgery is the most effective way to treat hydatid cysts. Medical treatment alone is not effective, complete surgical resection plus medical therapy is the preferred treatment for the isolated echinococcus. Rupture or spillage of the cysts should be avoided to prevent local or distant dissemination and anaphylaxis.

In conclusion, preoperative recognition and characterization of muscular or soft tissue hydatid lesions are essential and have vital roles in patient outcome. Avoidance of preoperative biopsy is important due to the high possibility of an anaphylactic response. At present, MRI is the modality of choice for thorough lesion characterization. The use of contrast agents may reveal additional information about the host response.
References


Correspondence to:
Ass. Prof. Gulden Sonmez Tamer, M.D., PhD.
Department of Medical Microbiology
School of Medicine, Kocaeli University,
Kocaeli, Turkey
E-mail: guldensonmez@hotmail.com